724 research outputs found

    Optimal control for one-qubit quantum sensing

    Full text link
    Quantum systems can be exquisite sensors thanks to their sensitivity to external perturbations. This same characteristic also makes them fragile to external noise. Quantum control can tackle the challenge of protecting quantum sensors from environmental noise, while leaving their strong coupling to the target field to be measured. As the compromise between these two conflicting requirements does not always have an intuitive solution, optimal control based on numerical search could prove very effective. Here we adapt optimal control theory to the quantum sensing scenario, by introducing a cost function that, unlike the usual fidelity of operation, correctly takes into account both the unknown field to be measured and the environmental noise. We experimentally implement this novel control paradigm using a Nitrogen Vacancy center in diamond, finding improved sensitivity to a broad set of time varying fields. The demonstrated robustness and efficiency of the numerical optimization, as well as the sensitivity advantaged it bestows, will prove beneficial to many quantum sensing applications

    Quantum sensing

    Full text link
    "Quantum sensing" describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity. Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors, or atomic clocks. More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions and flux qubits. The field is expected to provide new opportunities - especially with regard to high sensitivity and precision - in applied physics and other areas of science. In this review, we provide an introduction to the basic principles, methods and concepts of quantum sensing from the viewpoint of the interested experimentalist.Comment: 45 pages, 13 figures. Submitted to Rev. Mod. Phy

    Simulations of Information Transport in Spin Chains

    Full text link
    Transport of quantum information in linear spin chains has been the subject of much theoretical work. Experimental studies by nuclear spin systems in solid-state by NMR (a natural implementation of such models) is complicated since the dipolar Hamiltonian is not solely comprised of nearest-neighbor XY-Heisenberg couplings. We present here a similarity transformation between the XY-Heisenberg Hamiltonian and the grade raising Hamiltonian, an interaction which is achievable with the collective control provided by radio-frequency pulses in NMR. Not only does this second Hamiltonian allows us to simulate the information transport in a spin chain, but it also provides a means to observe its signature experimentally

    Detection of a light echo from SN1998bu

    Get PDF
    About 500d after explosion the light curve of the Type Ia SN1998bu suddenly flattened and at the same time the spectrum changed from the typical nebular emission to a blue continuum with broad absorption and emission features reminiscent of the SN spectrum at early phases. We show that in analogy to SN1991Tbu (Schmidt et al. 1994), this can be explained by the emergence of a light echo from a foreground dust cloud. Based on a simple model we argue that the amount of dust required can consistently explain the extinction which has been estimated by completely independent methods. Because of the similar echo luminosity but much higher optical depth of the dust in SN1998bu compared with SN1991T, we expect that the echo ring size of SN1998bu grows faster than in SN1991T. HST observations have indeed confirmed this prediction.Comment: 5 pages (including 3 figures) - Accepted for pubblication in ApJ Letter

    Nebular Spectra of SN 1998bw Revisited: Detailed Study by One and Two Dimensional Models

    Full text link
    Refined one- and two-dimensional models for the nebular spectra of the hyper-energetic Type Ic supernova (SN) 1998bw, associated with the gamma-ray burst GRB980425, from 125 to 376 days after B-band maximum are presented. One dimensional, spherically symmetric spectrum synthesis calculations show that reproducing features in the observed spectra, i.e., the sharply peaked [OI] 6300\AA doublet and MgI] 4570\AA emission, and the broad [FeII] blend around 5200\AA, requires the existence of a high-density O-rich core expanding at low velocities (\lsim 8,000 km s−1^{-1}) and of Fe-rich material moving faster than the O-rich material. Synthetic spectra at late phases from aspherical (bipolar) explosion models are also computed with a two-dimensional spectrum synthesis code. The above features are naturally explained by the aspherical model if the explosion is viewed from a direction close to the axis of symmetry (∼30o\sim 30^{\rm o}), since the aspherical model yields a high-density O-rich region confined along the equatorial axis. By examining a large parameter space (in energy and mass), our best model gives following physical quantities: the kinetic energy E51≡EK/1051E_{51} \equiv E_{\rm K}/10^{51} ergs \gsim 8 - 12 and the main-sequence mass of the progenitor star M_{\rm ms} \gsim 30 - 35 \Msun. The temporal spectral evolution of SN 1998bw also indicates mixing among Fe-, O-, and C-rich regions, and highly clumpy structure.Comment: 38 pages, 22 figures. ApJ, 640 (01 April 2006 issue), in pres

    On the Redshift Distribution of Gamma Ray Bursts in the Swift Era

    Full text link
    A simple physical model for long-duration gamma ray bursts (GRBs) is used to fit the redshift (z) and the jet opening-angle distributions measured with earlier GRB missions and with Swift. The effect of different sensitivities for GRB triggering is sufficient to explain the difference in the z distributions of the pre-Swift and Swift samples, with mean redshifts of ~1.5 and ~2.7, respectively. Assuming that the emission properties of GRBs do not change with time, we find that the data can only be fitted if the comoving rate-density of GRB sources exhibits positive evolution to z >~ 3-5. The mean intrinsic beaming factor of GRBs is found to range from ~34-42, with the Swift average opening half-angle ~10 degree, compared to the pre-Swift average of ~7 degree. Within the uniform jet model, the GRB luminosity function is proportional to L^{-3.25}_*, as inferred from our best fit to the opening angle distribution. Because of the unlikely detection of several GRBs with z <~ 0.25, our analysis indicates that low redshift GRBs represent a different population of GRBs than those detected at higher redshifts. Neglecting possible metallicity effects on GRB host galaxies, we find that ~1 GRB occurs every 600,000 yrs in a local L_* spiral galaxy like the Milky Way. The fraction of high-redshift GRBs is estimated at 8-12% and 2.5-6% at z >= 5 and z >= 7, respectively, assuming continued positive evolution of the GRB rate density to high redshifts.Comment: Accepted for publication in ApJ. The paper contains 29 pages and 24 figure

    The Rates of Hypernovae and Gamma-Ray Bursts: Implications for their Progenitors

    Full text link
    A critical comparison of estimates for the rates of hypernovae (HNe) and gamma-ray bursts (GRBs) is presented. Within the substantial uncertainties, the estimates are shown to be quite comparable and give a Galactic rate of 10−610^{-6} -- 10−510^{-5} yr−1^{-1} for both events. These rates are several orders of magnitude lower than the rate of core-collapse supernovae, suggesting that the evolution leading to a HN/GRB requires special circumstances, very likely due to binary interactions. Various possible binary channels are discussed, and it is shown that these are generally compatible with the inferred rates.Comment: Accepted by Astrophysical Journal Letters. 12 page

    Strong magnetic coupling between an electronic spin qubit and a mechanical resonator

    Get PDF
    We describe a technique that enables a strong, coherent coupling between a single electronic spin qubit associated with a nitrogen-vacancy impurity in diamond and the quantized motion of a magnetized nano-mechanical resonator tip. This coupling is achieved via careful preparation of dressed spin states which are highly sensitive to the motion of the resonator but insensitive to perturbations from the nuclear spin bath. In combination with optical pumping techniques, the coherent exchange between spin and motional excitations enables ground state cooling and the controlled generation of arbitrary quantum superpositions of resonator states. Optical spin readout techniques provide a general measurement toolbox for the resonator with quantum limited precision

    Chandra Detection of Massive Black Holes in Galactic Cooling Flows

    Get PDF
    Anticipating forthcoming observations with the Chandra X-ray telescope, we describe the continuation of interstellar cooling flows deep into the cores of elliptical galaxies. Interstellar gas within about r = 50 parsecs from the massive black hole is heated to T > 1 keV and should be visible unless thermal heating is diluted by non-thermal pressure. Since our flows are subsonic near the massive black holes, distributed cooling continues within 300 pc from the center. Dark, low mass stars formed in this region may be responsible for some of the mass attributed to central black holes.Comment: 6 pages with 3 figures; accepted by Astrophysical Journal Letter
    • …
    corecore